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Motivation

« Current EDL technology efforts tend toward landing larger
payloads

« Smallsat surface payloads can accomplish a variety of
Innovative Mars exploration and science objectives while
providing an opportunity for low-cost flight testing

« For example, science objectives for this landed payload could
include atmospheric, geophysics (e.g., high resolution
measurement of Mars remnant magnetic fields) and/or surface
Imagery. Weather station network, seismology network, impactors,
navigation beacons are also possible

* Low mass payloads can access high terrain elevations;
previously unattainable science objectives

* |n this study, a self-contained lander payload with a volume
of 3U (30x10x10 cm) and mass of 10 kg is assumed.
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SmallSat EDL Architecture
Design Space

EDL System Descent/Landing

Entry Largely Passive Active Surface Ops

single stage system Powered Descent

Aeroshell Footprint (hard lander, (<10 g's) Telecom Power system
>10,000 g’s)
Rigid Ballistic Parachute/Rough UHF Primary battery

Lander (500-2000 g’s)

Mechanical . Solar / secondary
deployable Guided = battery
Inflatable

decelerator

SmallSat mass/volume requirements allow for significant reduction in g’s associated with landing event.



Technical Concept

» A self-contained 3U smallsat payload is flown
within a 45 deg sphere cone configuration. Entry
conditions of 5.8 km/s and -15° FPA are assumed.
An unguided ballistic trajectory removes need for
RCS, gyros and sophisticated avionics. Landed
ellipse is on the order of 200km.

« A combination of accelerometer and timer
measurements are used to initiate deployment of
the parachute (MPF architecture).

» The payload is designed to withstand tens of
Earth g’s (< 50) of deceleration on landing.

« Considering omni-directional science operations
and telecommunications approach when the
landed payload is on the surface.

Key systems:

* Rigid 1m diameter aeroshell

« 2 rpm roll rate (pre-entry spin up)

« Ablative TPS (SLA or PICA)

» Large (~15m dia) supersonic parachute
» Crushable impact attenuator at landing

Entry Budget
Mass: 38 kg
Power: 10W
B = 48 kg/m?

t=80s
V=3.3km/s
Peak heating

A
t=150s

Mach=1.4
H=10km

t =400s
V=0m/s
Impact<50g’s
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Current Parachute Technology and Crushable
Foam Align Well for SmallSat Landed Payloads

« Surface impact loads of approximately 50 Earth g’s can be achieved with
use of a parachute with diameter on the order of 15 m.

« ~20 cm of crushable honeycomb impact attenuator is required to limit
touchdown to 50 g
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Key Trades and Challenges

* Interface and deployment
from host spacecraft

« Scalability of flight proven
EDL technology

« Packaging/volume
constraints

» Passive approach to
parachute release

Surface reorientiation
capability or omni-directional
surface operations capability
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Summary

« Cubesat surface missions have significant scientific and
exploration potential. Significant reduction in landed mass
enables new EDL opportunities

« Higher MOLA surface elevation altitudes
« Potential for network science

» Hosted EDL payload likely carried on cruise-stage and
released prior to final targeting maneuver.

» As a secondary payload, Smallsat EDL design minimizes
complexity, both in manufacturing and in operation, with a
minimum number of staging events and use of well-
established subsystems.

» Because the landed payload mass is relatively small, use of
existing systems provides ample control over deceleration
and heating environments.

* Preliminary observations indicate that low mass Mars
payloads may be landed safely and efficiently.



